Skip to main content

Metrics Podcast Episodes

View All Tags

Lars Kamp

In the old world of software engineering, developer productivity was measured by lines of code. However, time has shown how code quantity is a poor measure of productivity. So, how come engineering organizations continue to rely on this metric? Because they do not have a "single-pane" view across all the different systems that have data on various activities that actually correlate with productivity.

That's where Faros AI comes in. Faros AI connects the dots between engineering data sources‚ÄĒticketing, source control, CI/CD, and more‚ÄĒproviding visibility and insight into a company's engineering processes.

Vitaly Gordon is the founder and CEO of Faros AI. Vitaly came up with the concept for Faros AI when he was VP of Engineering in the Machine Learning Group at Salesforce. As an engineering leader, it's not always code; you also have business responsibilities. That meant interacting with other functions of the business, like sales and marketing.

In those meetings, Vitaly realized that other functions used standardized metrics that measure the performance of their business. Examples are CAC, LTV, or NDR. These functions built data pipelines to acquire the necessary data and compute these metrics. Surprisingly, engineering did not have that same understanding of their processes.

An example of an engineering metrics framework is DORA. DORA is an industry-standard benchmark that correlates deployment frequency, lead time, change failure rate, and time to restoration with actual business outcomes and employee satisfaction. For hyperscalers like Google and Meta, these metrics are so important that they employ thousands of people just to build and report them.

So, how do you calculate DORA metrics for your business? With data, of course. But, it turns out the data to calculate these metrics is locked inside the dozens of engineering tools used to build and deliver software. While those tools have APIs, they are optimized for workflows, not for exporting data. If you're not a hyperscaler with the budget to employ thousands of people, what do you do? You can turn to Faros AI, which does all the heavy lifting of acquiring data and calculating metrics for you.

The lessons learned from the modern data stack (MDS) come in when building data pipelines to connect data from disparate tools. In this episode, we explore the open-source Faros Community Edition and the data stack that powers it.

Lars Kamp
Andreas Grabner

Andreas Grabner is a DevOps Activist at Dynatrace, where he has fifteen years of experience helping developers, testers, operations, and XOps folks do their jobs more efficiently.

In this episode, Andreas and I discuss how the shift to cloud-native and more dynamic infrastructure is followed by a change in how developers, architects, and site reliability engineers (SREs) work together.

With the sheer quantity of resources running in cloud-native infrastructure and the monitoring signals produced by each resource, the only way to keep growing without "throwing people at the problem" is to turn to automation.

Andreas makes a noteworthy distinction between DevOps engineers and SREs:

  • DevOps engineers use automation to speed up delivery and get new changes into production.
  • SREs use automation to keep production healthy.

‚ÄčSREs are often former IT operations and system administrators responsible for physical machines, virtual machines (VMs), and Kubernetes clusters. As SREs, they move up the stack and become responsible for everything from the bottom of the stack all the way up to serverless functions and the service itself.

We dive into the differences between SLAs, SLOs, and Google's four golden signals of monitoring‚ÄĒlatency, traffic, errors, and saturation. Andreas shares the example of a bank and how they started defining SLOs to measure the growth of their mobile app business versus just defining engineering metrics.

This episode covers "engineering for game days," chaos engineering, and making the unplannable, plannable. Andreas shares his perspective on the general trend to "shift left" and include performance engineering in the development and architecture of cloud-native systems.

Contact Us

 

 

 

Some Engineering Inc.